

FIRST® Tech Challenge Academy Professional Development Syllabus

Course Description

The FIRST® Tech Challenge Academy professional development is a 40-hour course that gives attendees a deep understanding of a FIRST Tech Challenge season and how to implement the program to achieve science, technology, engineering, and math (STEM) learning objectives. In FIRST Tech Challenge, students learn to think like engineers. Teams design, build, and program robots to compete in an alliance format against other teams with a spirit of friendly competition. Many call it "the hardest fun you'll ever have." Participants in this course will walk through the season as they engage in these hands-on experiences and practice engineering principles such as fabrication, 3D printing, keeping an engineering notebook, and planning for awards.

Course Requirements

FIRST® provides for use during professional development:

- FIRST Tech Challenge Robot kit REV Robotics Kit
- Control and Communication Set
- Electronics Module, Husky Lens and Sensor Set

Participant Brings:

- · Computer with internet access
- Download REV Hardware client software prior to first session https://docs.revrobotics.com/rev-hardware-client/.
 This program is needed for all electronic hardware used to build the FIRST Tech Challenge robot and only operates on MS Windows OS device.

Mac Users: Please note that an Apple OS version of the hardware client is currently unavailable. To update the firmware and hardware, please refer to the *FIRST* Tech Challenge support documentation for detailed instructions on utilizing Manual Update Method 2 as outlined by REV. Instruction are found at https://ftc-docs.firstinspires.org/en/latest/ftc_sdk/updating/controlhub_os/Updating-the-Control-Hub-OS.html.

Course Objectives

By the end of this course, you will:

- Participate in the FIRST experience from a student's point of view.
- Explore the essential components of the FIRST Tech Challenge program.
- Feel comfortable using hardware and software components of *FIRST* Tech Challenge robotics kits in addition to fabrication techniques and 3D printing.
- Feel comfortable using an advanced mecanum drive train.
- Understand how to code using Blockly programming software using autonomous and remote-control utilizing Vision Processing, Inertial Measurement Units, and Sensors.
- · Know how to access additional resources.
- Be familiar with best practices for a competitive season.
- Learn how to facilitate hands-on activities for the classroom or after-school programs.
- Be able to foster computational thinking, collaboration, and problem-solving skills in students.
- Have experience with Project-Based Learning, the Engineering Design Process, and 21st Century Skills.
- Learn to build teams, participate in robot game matches, and present to judges.
- Utilize, model, and reinforce the FIRST Core Values!

Daily Topics

Day 1:

- Implement Core Value activities to help with team building and communication between team members.
- Investigate the FIRST Tech Challenge awards criteria.
- Develop an engineering notebook and discuss best practices for using a notebook.
- Implement different build methods using nonstandard robot material; explore various fabrication learning stations.
- Configure and build a robot using the REV Robotics Kit REV-45-2470.
- Explore the essential components of the FIRST Tech Challenge program.

Day 2:

- Explore Team sustainability strategies.
- Design and Build manipulators using nonstandard robotics parts.
- Program the robot to perform during a teleop period.
- Program servos using a SRS Programmer.
- Introduce the SCRUM work methodology.
- Implement different build methods using nonstandard robot material; explore various fabrication learning stations.

Day 3:

- Explore different types of robot chassis and various advanced mechanisms including linear slides and mecanum chassis.
- Program and use sensors to better control the robot.
- Program the robot to respond to 2 controllers at once.
- Program the robot for autonomous and teleop mode. Implement different build methods using nonstandard robot material; explore various fabrication learning stations.

Day 4:

- Compete in a scrimmage allowing each group to trouble shoot design issues their robot may have.
- Simulate how a true off season build day with other teams works.
- Discussion on building, technical issues, troubleshooting and other FAQ.
- Implement Core Value activities to help with team building and communication between team members. Implement different build methods using nonstandard robot material; explore various fabrication learning stations.

This day will be continuing to build and discuss, troubleshoot practice, and participate in scrimmages.

Day 5:

- This day will be mostly building, programming and discussion including:
 - o Know how to access additional resources.
 - o Be familiar with best practices for a competitive season.
- Go through a simulated competition day:
 - o Complete with prep work
 - Judging
 - o Robot competition