

Our Future: **Built Better Together**

#firstinspires

Scope and Sequence Modifications to Address Supply Chain Issues

Given the current supply chain issues, modifications to the scope and sequence may be required to deliver the curriculum until the supply chain issues are resolved. This guide will enable a teacher to utilize the curriculum with the mechanical kit of parts without the Control Hub for 60 hours of instruction.

It does require the REV Servo Programmer which is included in the Expansion set but not in the Edubot kit. It will need to be purchased separately if the expansion set was not purchased.

					-		riculum a Impacteo					es					
Unit	5	10	20	30	40	60	-	70	80	90	100	110	120	130	140	150	160
Starting with Workforce Skills																	
Machines and Mechanisms																	
Designing for the Game																	
Building and Programming a Basic Robot			_														_
Industry 4.0																	
Sensors, Machine Learning, and Object- Oriented Programming																	
Improving through Iteration I																	
Improving through Iteration II																	
Project Sprints and Competition																	
Learning Pathways and Career Exploration																	

Starting with Workforce Skills (10- 20 hours)

Lesson	Student Outcomes	Team Activity	Modification/ Hardware Need
Core Values		Brainstorming	None
Problem: How can you use	 Demonstrate Core Values while participating in building activities. 	1. Innovating with Parts	Mechanical Kit of Parts w/out Control Hub
<i>FIRST</i> [®] philosophies to create a	2) Develop a team identity and use it for communicating	2. Team Purpose	None
team purpose and achieve it through clear communications and expectations?	 expectations as a team using <i>FIRST</i> Core Values and <i>Gracious Professionalism</i>. 3) Develop a way to document communications with your team to explain your engineering and learning journey. 	3. Team Communication	None
Duciant Management	1) Over the mode for your team that include workforce skills	Brainstorming	None
Project Management	 Create goals for your team that include workforce skills, impactful learning, and incorporate Core Values. 	1. Goal Setting	None
Problem: How can you establish	 Create a project management plan for how you will achieve goals 	2. Project Management	None
impactful goals and expectations for your team and execute these goals using project management?	and manage tasks for each member of your team and identify roadblocks to success.3) Create a safety plan that addresses local and national safety expectations that are transferable to business and industry.	3. Safety Plan	None
		Brainstorming	None
Tools for Problem Solving	 The arm will be built using materials and details supplied by your teacher. Use computational thinking to gain a better understanding of the 	1. Can You Build It	Mechanical Kit of Parts w/out Control Hub
Problem: How do we use the engineering design process and computational thinking to build a mechanical arm?	problem to modify engineering design goals.3) Improve the design through iteration and testing.4) Use Computer-Aided Design software to increase innovative	2. Connecting Resources	Mechanical Kit of Parts w/out Control Hub
	capabilities in the engineering design process.	3. Improving Testing	Mechanical Kit of Parts w/out Control Hub

		4. OnShape	Participants could spend up 4 Hours in <u>OnShape</u> <u>Curriculum</u>
Career Card		Brainstorming	None
Problem: How can our career skills help us pursue individual	 Use the Career Ready Skills Rubric to identify strengths and weaknesses and explore careers that might use these skills. Develop a personal purpose, focus, how you will achieve the 	1. Career Skills	None
career goals while helping our team achieve its goal and purpose?	focus, and skills you add to the team and incorporate it into a career card that demonstrates who you are.	2. Career Card	None

Machines to Mechanisms 10 -15 Hours

Teacher modification needed: Instead of students applying the analysis to their current robot game strategy, apply the content principles to the Can You Build it team activity from the previous module. Directions on how to use the servo programmer are located <u>here</u>.

Lesson	Criteria and Constraints	Team Activity	Modification/ Hardware Need
Simple to Complex Machines	1) Improve a manipulator design by combining simple machines	Brainstorming	Mechanical Kit of Parts w/out Control Hub Servo Programmer Needed
Problem: How can we analyze the forces involved and know the essential	to make a more complex machine while considering the mechanical advantage.2) Conduct tests using a simulator to understand and improve the magnitude of the conduct end vector former.	1. Simple to Complex Machines	Mechanical Kit of Parts w/out Control Hub Servo Programmer Needed
calculations of the manipulator to achieve the desired output?	the magnitude of the scalar and vector forces.	2. Scalar, Vector, and Magnitude	Mechanical Kit of Parts w/out Control Hub Servo Programmer Needed
Levers, Cams, Linkages, and Linear Motion	 Conduct a test with the Arm Physics Lab to understand how weight distribution affects the force needed for a fulcrum in a 	Brainstorming	Mechanical Kit of Parts w/out Control Hub Servo Programmer Needed
Problem: How can you increase the work your manipulators accomplish	third-class lever. Apply knowledge of levers to improve the mechanical advantage of at least one lever on your robot.	1. Lever Design	Mechanical Kit of Parts w/out Control Hub Servo Programmer Needed

with levers, cams, linkages, and linear motion?	 Analyze how the lifting force, the mass of the object, and the coefficient of friction affect the gripper's ability to lift. Design and prototype a linkage or cam mechanism that could 	2. Gripper Forces	Mechanical Kit of Parts w/out Control Hub Servo Programmer Needed
	improve the performance of one of your robot functions.4) Conduct a design analysis to determine if linear motion could improve your robot performance. Design, develop, and test a	3. Linkages and Cams	Mechanical Kit of Parts w/out Control Hub Servo Programmer Needed
	linear motion prototype if it would help you meet your game strategy.	4. Linear Motion	Come Back to in Designing for the Game Module
Conveyors, Intakes, and	1) Discover how a robot might gather objects using an intake.	Brainstorming	Optional
	Conduct a design analysis to determine if intakes could improve your robot performance. Design, develop, and test an intake prototype to manipulate a game object if it would help	1. Intake Design Analysis	Mechanical Kit of Parts w/out Control Hub Servo Programmer Needed
Object Trajectory Problem: How can you design with more automation using	 you meet your game strategy. Discover how a robot might transfer objects using a conveyance system. Conduct a design analysis to determine if conveyance could improve your robot performance. Design, 	2. Conveyance Design Analysis	Mechanical Kit of Parts w/out Control Hub Servo Programmer Needed
the speed of motors to achieve intake, conveyance, or trajectory?	 develop, and test a conveyance prototype to manipulate a game object if it would help you meet your game strategy. 3) Using the technical knowledge of trajectory, conduct a design analysis to determine if the trajectory of a game element is 	3. Shooting and Trajectory Design Analysis	Skip
	relevant to your game strategy. Design, develop, and test a shooting mechanism to manipulate a game object if it would help you meet your game strategy.		

FIRST EDUCATION

Designing for the Game 10-20 hours

Lesson	Student Outcomes	Team Activity	Modification/ Hardware Need
Game Plan	1) Discover patterns in the game design by looking at the	Brainstorming	None
Problem: How do we	game flow and patterns of scoring.	1. Game Patterns	Mini- Game Field
use computational thinking to understand the game we will	 Gain a deeper understanding of the engineering tasks by taking measurements of the game field, and game elements. 	2. Engineering Tasks	Mini- Game Field
compete in with our robots?	3) Develop a game strategy and robot algorithms for autonomous, teleop, and end-game.	3. Algorithm Development	Mini-Game Field
		Brainstorming	None
Robot Plan Problem: How do you design a robot using your game strategy?	develop orthographic drawings to support the design.	1. Divergent Brainstorming	Mechanical Kit of Parts w/out Control Hub Servo Programmer Needed
		2. Convergent Brainstorming	Mechanical Kit of Parts w/out Control Hub Servo Programmer Needed
your game strategy:	 Test the design idea in the physics simulations to determine if it theoretically will work 	3. Orthographic Drawing	Mechanical Kit of Parts w/out Control Hub Servo Programmer Needed
		4. Physics Lab Test	None
Robot Challenge by Unit	 Students can use beginner, intermediate or advanced robot achievement goals to increase skill level with each unit. The tasks are identified by unit and can be referred to throughout the course after the Game release. 	 Building and Programming a Basic Robot Machines to Mechanisms Sensors, Machine Learning and Java Improving through Iteration I & II 	<u>FTC Sims</u>

Building and Programming a Basic Robot 10-20 Hours

Lesson	Criteria and Constraints	Team Activity	Modification/ Hardware Need
Robots and the Workforce	 Identify the essential components of a robot that are in your kit of parts. 	Brainstorming	None
Problem: How can you	 Conduct an analysis of your kit of parts to determine those that constrain motion and those that transform motion. 	1. Understanding Parts	Mechanical Kit of Parts w/out Control Hub
develop design criteria for a <i>FIRST</i> ® Tech	 Describe part distinctions and how they could relate to their performance. 	2. Identifying Distinctions	Mechanical Kit of Parts w/out Control Hub
Challenge robot built with your kit of parts?	 Develop design criteria for your robot using the engineering design process. 	3. Design Criteria	Mechanical Kit of Parts w/out Control Hub
Chassis and Drive		Brainstorming	None
System Problem: How can we	 Discover different chassis designs and conduct a brainstorming session to choose an initial design that meets your design criteria and skill level. 	1. Chassis Brainstorming	Mechanical Kit of Parts w/out Control Hub
design and build a chassis that considers center of gravity, speed,	 Using the physics lab conduct an engineering analysis for the center of gravity for the chassis design you chose. Using the physics lab, conduct an engineering analysis for friction, 	2. Center of Gravity	Mechanical Kit of Parts w/out Control Hub
and torque and is rigid enough to hold the robot	torque, and velocity for the chassis design you chose.Develop a project management plan for your chassis build.	3. Torque and Velocity	Mechanical Kit of Parts w/out Control Hub
subsystems?		4. Chassis Project Management	Mechanical Kit of Parts w/out Control Hub
Electrical Wiring and Configuration	1) The robot should be wired using an understanding of electrical theory	Brainstorming	Required
Problem: How do you prevent communication	 to prevent electrostatic discharge. 2) The team should have a wiring diagram created and placed in the <i>Engineering Notebook</i>. 3) The team should perform updates for the hardware and software and 	1. Wiring	Skip
errors with robot wiring and software	configure the hardware according to the wiring diagram.	2. Electrical Diagram	Skip

management techniques?	 Conduct research to understand the 5G wireless technology that the robot uses and its application in the future workforce. 	3. Updates, Wi-Fi Connections, and Configuration	Skip
		4. Wireless Technology and Waves	None
		Brainstorming	Required
Programming	 Algorithms should be developed using pseudocode and computational thinking. 	1. Pseudocode Development	None Needed
Problem: How do you use the <i>FIRST</i> ® Tech Challenge IDE and computational thinking to write the plans for the robot to act?	 Identify where abstraction occurs in the IDE and use the IDE to create a tank drive op mode. Use conditionals to add a servo to your robot program. Add an additional motor that could operate a manipulator. 	2. Tank Drive Op Mode	Skip
	5) Develop a basic algorithm for autonomous to drive and park.	3. Programming a Servo	FTC Sims
		4. Programming a Manipulator	FTC Sims
		5. Programming an Autonomous Mode	FTC Sims
		Brainstorming	
Manipulators	 Design and build an end effector to manipulate an object. Record its design in your <i>Engineering Notebook</i>. 	1. End Effector	Mechanical Kit of Parts w/out Control Hub
Problem: How do you ensure your manipulator design is efficient and can perform the work you want it to do?	2) Gather data needed to perform calculations for the amount of torque needed to lift the game object with your manipulator.	2. Motor Data Table	Mechanical Kit of Parts w/out Control Hub
	 Apply academic and technical skills including using physics simulations to determine the motor torque and efficiency when 	3. Using the Arm Physics Lab	Mechanical Kit of Parts w/out Control Hub
	 choosing an actuator that most suits your end effector. 4) Use gear ratios or gear trains to improve motor efficiency for your actuator. 	4. Moment Calculations	Mechanical Kit of Parts w/out Control Hub
		5. Gear Ratios	Mechanical Kit of Parts w/out Control Hub

Industry 4.0 and Your Community 10-20 Hours

Lesson	Criteria and Constraints	Team Activity	Modification/ Hardware Need
		Brainstorming	Suggested
Problem: How can building	 Develop a presentation on your robot's utilization of Internet of Things technology. Brainstorm ways the robot can use big data, augmented reality, and machine learning to better its 	1. 5G Wireless Technology	None Needed
your robot increase your knowledge for an Industry 4.0 career?	automation and efficiency.3) (Optional) Use industry tools such as augmented reality from PTC or collaboration tools.	2. Machine Learning and Al	None Needed
		3. Augmented Reality	None Needed
ndustry 4.0 and Your Community	1) Create a Venn diagram poster that could be used to	Brainstorming	None Needed
Problem: How can you utilize ndustry 4.0 in your	educate others about Industry 4.0 and the future.2) Develop a plan to impact your community through a project, awareness, or education of Industry 4.0 and	1. Industry 4.0 and the Future	None Needed
community to impact others' inderstanding of STEM?	the future.	2. Community Impact Project	None Needed
Share with Your Community	1) Brainstorm ways to implement a community event	Brainstorming	None Needed
Problem: How can you share the impact with others through an event to benefit you and your community?	where you can share the knowledge you have learned.2) Work with the rest of your class to determine how each team will help to contribute to the planning and	1. Event Brainstorming and Planning	None Needed
	even implementation of the event.	2. Event Project Management	None Needed

Sensors, Machine Learning, and Object-Oriented Programming 10-15 Hours

Lesson	Criteria and Constraints	Team Activity	Modification/ Hardware Need
Sensors and Feedback	1) Use a decision matrix to evaluate and choose sensors to	Brainstorming	None
Problem: How can you	improve robot feedback and performance.2) Use a truth table and flow chart to evaluate the logic and	1. Sensor Choices	FTC Sims
ncrease feedback and control using sensors and	program flow of your robot. 3) Choose one sensor to implement on your robot and use	2. Truth Tables and Flow Charts	FTC Sims
improve program flow with Boolean data?	computational thinking to further develop your algorithm to reduce cumulative error.	3. Algorithm Development	FTC Sims
Developing States and		Brainstorming	FTC Sims
Functions	1) Use functions in your autonomous program to improve	1. Function Development	FTC Sims
Problem: How can you increase abstraction and	your autonomous program.2) Improve your code using encoders for navigation, and if possible, use the IMU for turning navigation.	2. Using Encoders and the IMU	FTC Sims
robot control through functions and states?	 Use computational thinking to analyze your code for state machine development for your autonomous program. 	3. States	FTC Sims
Developing Robot Machine	1) Develop a data table of how your robot might make	Brainstorming	Skip
Learning Problem: How can you utilize	decisions and classify objects.2) Explore the tools available for using image processing via the Webcam. Utilize GitHub to test the webcam and	1. Machine Learning Pseudocode	Skip
your robot's ability to perform machine learning through vision processing?	its capability for Vuforia or TensorFlow.	2. 2D and 3D Recognition	Skip
Object-Oriented Programming	1) Decompose your Java program understanding syntax,	Brainstorming	
Problem: How is an abstraction used in Java to handle communicating with	methods, objects, and classes.2) Use myBlocks to convert functions that you have created into myBlocks.	1. Decomposing Java	Skip
	3) (Optional) Use an external source to learn more in-depth	2. myBlocks	Skip
different components in a program?	Java programming.	3. Learn Java	

Lesson	Criteria and Constraints	Team Activity	Modification/ Hardware Need
Iteration and Product Life	1) Improve your robot by making it simpler by analyzing the	Brainstorming	Skip
Cycle Problem: How do you improve your robot using the	 Improve your robot by making it simpler by analyzing the design for feasibility, optimality, and reliability. Manage the product lifecycle to ensure growth continues through analyzing design weaknesses. Create a project 	1. Iteration I	Skip
Robot Technical Design Rubric while improving reliability and functionality to	 management plan for improving those weaknesses. 3) (Optional) Use CAD to track versions and design changes on your robot. 	2. Iteration II	Skip
meet your design goals?		3. OnShape CAD	Optional
Mechanism Improvement	1) Brainstorm ways of improving your mechanisms using	Brainstorming	Skip
Problem: How can you improve the mechanisms on	 Brainstoff ways of improving your mechanisms using industry machines as inspiration for a design. Prototype ideas for improving your mechanisms and use a decision matrix to determine the most effective one. 	1. Industry Ideas	Skip
your robot by using industry machines for inspiration?		2. Testing Ideas	Skip
Algorithm Improvement	 Use computational thinking to identify additional algorithms needed to control your robot or its actuators. 	Brainstorming	FTC Sims
Problem: How do you improve the algorithms on your robot as you add	 Record information for understanding the problem in your <i>Engineering Notebook</i>. 2) Use components of flow control to increase functionality such as additional conditional logic variables, or operators 	1. Algorithm Improvement	FTC Sims
functionality and hardware to it?	such as additional conditional logic, variables, or operators. Record code modifications and testing in the <i>Engineering</i> <i>Notebook</i> .	2. Increase Flow Control	FTC Sims

Improving through Iteration 1 5-10 Hours

Lesson	Criteria and Constraints	Team Activity	Modification/ Hardware Need
		Brainstorming	Skip
Mechanism Improvement Problem: How can you mprove the mechanisms on	 Use project management to improve your robot's reliability and functionality. Brainstorm and analyze using the physics lab ways to improve a design with more speed and efficiency. 	1. Improving Reliability and Functionality	Skip
your robot by improving the design idea and improving the execution of the design?	 Use CAD or 3D Printing to improve your innovation and functionality on the robot while developing career skills. 	2. Improving Design Ideas	Skip
the execution of the design:		3. Design for 3D Printing	Skip
		Brainstorming	Skip
Algorithm Improvement Problem: How do you improve the algorithms on your robot as you add additional functionality and hardware to the robot?	 Coordinate your hardware and software by adding additional hardware to your configuration file and identifying the data needed for the hardware. 	1. Configure Hardware	Skip
	 Identify possible algorithms for using the hardware and record testing data. Increase flow control through decreasing cumulative error and improved data processing 	2. Identify Possible Algorithms	FTC Sims
		3. Increase Flow Control	FTC Sims
Project Management Sprint		Brainstorming	Skip
Problem: How can you complete a project management sprint to address problems on the robot and prepare for the competition?	 Complete a project sprint for tasks to be completed on the robot. Complete a project sprint for your <i>Engineering Notebook</i>. 	1.Robot Sprint	Skip
	 Complete an evaluation of our project management sprint to determine any roadblocks. 	2. Engineering Notebook Sprint	Skip
sompetition.		3. Evaluate Sprints	Skip

Improving through Iteration II 5-10 Hours

Project Sprints and Competition 10 Hours

Lesson	Criteria and Constraints	Team Activity	Modification/ Hardware Need
Conducting a Project Management Sprint		Brainstorming	Suggested
Problem: How can you	 Complete a project sprint for tasks to be completed on the robot. 	1. Robot Sprint	FTC Sims
complete a project management sprint to	 Complete a project sprint for your Engineering Notebook. Complete an evaluation of our project management 	2. Engineering Notebook Sprint	FTC Sims
address problems on the robot and prepare for the competition?	sprint to determine any roadblocks.	3. Evaluate the Sprints	FTC Sims
Presentation and Competition Problem: How do you improve your communication skills by presenting and demonstrating your knowledge to others?	 Create a team summary of your successes. Develop a team presentation to articulate your team's purpose, goals, and accomplishments. Compete with your team in a Mini-Game competition. 	Brainstorming	Suggested
		1. Identifying Successes	FTC Sims
		2. Presentation Development	FTC Sims
		3. Mini-Game Competition	Required
Learning Portfolio	1) Identify your strengths and weaknesses using the course	Brainstorming	None
Problem: How can you develop a portfolio that shows your skills to help you pursue your future goals and career?	 rubrics. 2) Provide evidence of your strengths with references to the Engineering Notebook. 3) Make improvements to your portfolio based upon feedback from your team. 	1.Identifying Strengths and Weaknesses	Focus on algorithms and programming
		2. Provide Evidence of Your Skills	Focus on algorithm and programming
		3.Improve through Feedback	Focus on algorithm and programming

Learning Pathways and Careers 10-20 Hours

Lesson	Criteria and Constraints	Team Activity	Modification/ Hardware Need
Competition and Learning Pathways Problem: How can I continue to learn about robotics on a competitive team and get access to scholarships and industry certifications?	 Explore team roles on a <i>FIRST®</i> competitive team and their correlation to jobs in different industries. Learn the benefits of being on a competitive team that can advance regionally and internationally. Identify how career pathways on a competitive team can help you achieve scholarships, internships, and industry credentials. Create three goals for your future career path. Explore careers and internship opportunities from <i>FIRST</i> Strategic Partners. 	Brainstorming	None
		1. Team Role	None
		2. Goal Setting	None
		3. Career Exploration	None
Résumé Problem: How can you develop a résumé to share with potential scholarship providers, employers, or community members?	 Understand the principles of writing a good résumé and the difference between an entry-level résumé and a professional résumé use it to build a résumé that demonstrates the impact you make with your workforce and technical skills. Gain feedback and improve your résumé for potential scholarships, employers, or community members. Apply for digital badges and take advantage of networking opportunities in Tallo. 	Brainstorming	None
		1. Identifying Successes	None
		2. Presentation Development	None
		3. Mini-Game Competition	None
Learning Portfolio	1) Identify your strangths and weaknesses using the source	Brainstorming	None
Problem: How can you develop a portfolio that shows your skills to help you pursue your future goals and career?	 Identify your strengths and weaknesses using the course rubrics. Provide evidence of your strengths with references to the Engineering Notebook. Make improvements to your portfolio based upon feedback from your team. 	1.Identifying Strengths and Weaknesses	None
		2. Provide Evidence of Your Skills	None
		3. Improve through Feedback	None

