

FIRST® Robotics Engineering Explorations Course Outline

The *FIRST*[®] Robotics Engineering Explorations course provides students with experiences in engineering, robotics, programming, and game-based learning. *FIRST* revolves around a defined set of Core Values and gives students authentic, real-world learning experiences. Working as part of a team, students use what they learn through *FIRST* to research and design an innovative solution to a real-world problem. At the same time, students will work in teams to build their own game-ready robot to showcase at an event at the end of the course. Students practice 21st century skills like technical writing, presentation skills, communication, project management, collaboration, and teamwork.

Unit 1: Welcome to FIRST (12 hours)

OBJECTIVES

- Explore what it means to be a part of FIRST.
- Research and think about ways robots can improve people's lives.
- Explore a variety of career options and the varying levels of education needed for them.
- Use basic materials to solve engineering challenges.
- Design a game for the teams to compete in.

ACTIVITY	DRIVING QUESTIONS	TIMING
Robotics Engineering Explorations	 How do we prepare for <i>FIRST</i> competitions using robots? What are the Core Values and philosophies of <i>FIRST</i>? Why are we working in teams? 	1 hour
Engineers Rock	 What are engineers? What do they do? How do they do it? Why are they important? What is the purpose of an Engineering Notebook? How can we use the Engineering Design Process to solve a problem? 	1 hour
Problems and Innovation	 Why is identifying a problem an important part of the Engineering Design Process? What are some problems our community has faced in the past, and how were they solved? What is a problem our community is currently facing? 	2 hours
Solve Your Own Problem	 Are there robots in our community right now? Can we use a robot to solve the community problem we identified? What would a robot need to do to solve our community problem? 	1.5 hours
Help Wanted, Positions Available	 How do we know if we've successfully used the Engineering Design Process? What sorts of skills do we need for big design and engineering projects? What professions are needed for big engineering design projects? 	1.5 hours
Safety and the Kit	 What do we need to know so we can stay safe while working with our robot? What will we use to build the robot? What is in the robotics kit? 	2 hours
Ball Game	 How can we design our own ball game? How can we work with another team as an alliance to win a game? How can we use <i>FIRST</i> Core Values, <i>Gracious Professionalism</i>[®], and <i>Coopertition</i>[®] while we work to win a game? 	3 hours

Unit 2: Build a Bot (12 hours)

OBJECTIVES

- Design and build a robot chassis that can complete a game-based challenge while researching ways in which robotics is used in your community.
- Get to know your kit of parts.
- Explore real-world chassis designs.
- Introduce movement, control, and power.

ACTIVITY	DRIVING QUESTIONS	TIMING
A Robot Skeleton	 What is a frame? What is a chassis? How do we build a frame from the parts in our robotics kit? How will the chassis design help our team compete in the ball game? 	3 hours
Get Those Chassis Moving	 Why are different wheels used for different jobs? How do we mount wheels to our chassis using the robotics kit? What sorts of wheel configurations can you create from the robotics kit? 	3 hours
Mounting Motors	 How will the robot move? How do we mount motors onto the chassis? Where should we mount motors on the chassis? 	2.5 hours
Power and Control	 How do we power our robot? What is a control system and what does it do? How do we connect all the electronic components of my robot? 	1.5 hours
Fine Tuning	 How can we improve the design of our robot? Are all the parts of our robot secure? Is our robot ready for programming? 	2 hours

Unit 3: Make It Move (24 hours)

OBJECTIVES

- Configure and program a robot to perform driver-controlled movements.
- Develop and troubleshoot driver-controlled programs.
- Collect data about your robot using telemetry.

ACTIVITY	DRIVING QUESTIONS	TIMING
Configure It Out	 Now that the robot is built and wired, how do we drive it around? How can we communicate with the robot so it can do its job? 	3 hours
Programming is Everywhere	 How can we use a gamepad to move our robot? How and why should we use a similar strategy with our ball game robot? 	3 hours
Troubleshooting is Everywhere	How can we troubleshoot a program?Why is troubleshooting important?	3 hours
Think Like a Robot	 How can we write directions for a person to do exactly what we want and nothing else? How can we get our robot to do exactly what we want and nothing else? Why is this important? 	3 hours
Let's Get Moving	 Can we program our motors to change the way the robot moves? What role will the programming of the motor play in their robot design? 	3 hours
Information Exchange	 How do we retrieve data from our robot? What sort of data can we get from our robot? How can we use data feedback to improve our robot? 	3 hours

I'm in Complete Control	 What sort of tasks can we make our robot do? Can we create a set of instructions based on what we want our robot to do? How do we translate a set of instructions for completing a job into a program for our robot? 	3 hours
The Big Race	 Can we control our robot well enough to drive it in a relay race against another team? Can we use the Engineering Design Process to create the best possible program for winning a relay race? Why is the level of control we have over a robot important, and how does it apply to our ball game? 	3 hours

Unit 4: Programming Autonomous Robots (12 hours)

OBJECTIVES

- Develop and troubleshoot autonomous programs and sensors.
- Explore the differences between driver-controlled and autonomous modes.
- Explore sensor configuration and functions.

ACTIVITY	DRIVING QUESTIONS	TIMING
Autonomous Functionality	 How can we control a robot when it is not driver controlled? What do we need to know to make our robot move autonomously? How do we write instructions that will make our robot complete a task autonomously? 	3 hours
Better Control Through Encoders	 What are encoders? How can we use the encoders built into our motors to gain better control of our robot's movement? What algorithms do we need to use to take advantage of our encoders? 	3 hours
Robot Senses	 What are sensors, and how can we use them to improve our robot? What sensors are available in our kit of parts? What additional sensors will be most useful in the ball game challenge? 	3 hours
Collision Avoidance	 How can we store data in our program? How can we reuse and call stored data? What are variables and how do we use them in our program? 	3 hours

Unit 5: Build and Program Manipulators (20 hours)

OBJECTIVES

- Build and program an arm and manipulator that works in autonomous and driver-controlled modes.
- Research basic arm and manipulator designs.
- Program and test a robotic manipulator in autonomous and driver-controlled modes.

ACTIVITY	DRIVING QUESTIONS	TIMING
Ball Grabber	What is an actuator?How do we use the actuators in our kit?	4 hours
Iterate, Feedback, and Improve	 How do we improve the robot mechanically and through programming? How can we improve our designs to perform better? How can programming enable our robot to have more control? How can sensors improve the automation process? 	4 hours
Robot Arms	 How can we do more complex actions with our ball game robot? What is a robotic arm? Where are robotic arms used in manufacturing? How do we choose the correct motors for the robot arm? 	4 hours

Actuating Your Manipulator	 How are the motors in our robotics kit different? How do we ensure we choose the correct motor to make our manipulator work? How can we integrate the proof of concept into our robot? 	4 hours
Project Sprints	 How can a project sprint help to improve iteration cycles? How does a project sprint help us keep track of tasks that need to be completed? How can project sprints help us improve teamwork and innovation? 	4 hours

Unit 6: The Ball Game (10 hours)

OBJECTIVES

- Build and program a robotic arm and manipulator that works in autonomous and driver-controlled modes.
- Research basic arm and manipulator designs.
- Program and test a robotic manipulator in autonomous and driver-controlled modes.
- As a team, present the final innovative solution and your innovative robotics solution.

ACTIVITY	DRIVING QUESTIONS	TIMING
Preparing for the Game	 How can we involve the team during the competition? How do we plan our competition day? How do we know if we are prepared for the game? 	3 hours
More Than Robots	 What are our next steps for the community event? What needs to be done to our robot for the ball game challenge? How will we market the community event? How will we present our robot and our design in our community? 	2 hours
Welcome to the Game	 Are we ready to have fun competing? Are we ready to share our knowledge and what we have learned? How does <i>Coopertition</i> impact our approach to competing? 	5 hours

FIRST[®] the FIRST[®] logo, Coopertition,[®] and Gracious Professionalism[®] are trademarks of For Inspiration and Recognition of Science and Technology (FIRST). ©2024 FIRST. All rights reserved.